Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(14): 10288-10301, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38556985

RESUMO

Insufficient reactive oxygen species (ROS) production and radioresistance have consistently contributed to the failure of radiotherapy (RT). The development of a biomaterial capable of activating ROS-induced apoptosis and ferroptosis is a potential strategy to enhance RT sensitivity. To achieve precision and high-efficiency RT, the theranostic nanoplatform Au/Cu nanodots (Au/CuNDs) were designed for dual-mode imaging, amplifying ROS generation, and inducing apoptosis-ferroptosis to sensitize RT. A large amount of ROS is derived from three aspects: (1) When exposed to ionizing radiation, Au/CuNDs effectively absorb photons and emit various electrons, which can interact with water to produce ROS. (2) Au/CuNDs act as a catalase-like to produce abundant ROS through Fenton reaction with hydrogen peroxide overexpressed of tumor cells. (3) Au/CuNDs deplete overexpressed glutathione, which causes the accumulation of ROS. Large amounts of ROS and ionizing radiation further lead to apoptosis by increasing DNA damage, and ferroptosis by enhancing lipid peroxidation, significantly improving the therapeutic efficiency of RT. Furthermore, Au/CuNDs serve as an excellent nanoprobe for high-resolution near-infrared fluorescence imaging and computed tomography of tumors. The promising dual-mode imaging performance shows their potential application in clinical cancer detection and imaging-guided precision RT, minimizing damage to adjacent normal tissues during RT. In summary, our developed theranostic nanoplatform integrates dual-mode imaging and sensitizes RT via ROS-activated apoptosis-ferroptosis, offering a promising prospect for clinical cancer diagnosis and treatment.


Assuntos
Ferroptose , Neoplasias , Radioterapia Guiada por Imagem , Humanos , Espécies Reativas de Oxigênio , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Apoptose , Peróxido de Hidrogênio , Linhagem Celular Tumoral
2.
ACS Cent Sci ; 9(10): 1976-1988, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37901175

RESUMO

Surgery, radiotherapy (RT), and brachytherapy are crucial treatments for localized deep tumors. However, imprecise tumor location often leads to issues such as positive surgical margins, extended radiotherapy target volumes, and radiation damage to healthy tissues. Reducing side effects in healthy tissue and enhancing RT efficacy are critical challenges. To address these issues, we developed a multifunctional theranostic platform using Au/Ag nanodots (Au/AgNDs) that act as a "pilot light" for real-time guided surgery, high-efficiency RT, and brachytherapy, achieving a strategy of killing three birds with one stone. First, dual-mode imaging of Au/AgNDs enabled precision RT, minimizing damage to adjacent normal tissue during X-ray irradiation. Au/AgNDs enhanced ionizing radiation energy deposition, increased intracellular reactive oxygen species (ROS) generation, regulated the cell cycle, promoted DNA damage formation, and inhibited DNA repair in tumor cells, significantly improving RT efficacy. Second, in brachytherapy, precise guidance provided by dual-mode imaging addressed challenges related to non-visualization of existing interstitial brachytherapy and multiple adjustments of insertion needle positions. Meanwhile, the effect of brachytherapy was improved. Third, the excellent fluorescence imaging of Au/AgNDs accurately distinguished tumors from normal tissue, facilitating their use as a powerful tool for assisting surgeons during tumor resection. Taken together, our multifunctional theranostic platform offers real-time guidance for surgery and high-efficiency RT, and improves brachytherapy precision, providing a novel strategy and vision for the clinical diagnosis and treatment of cancer.

3.
Biomater Sci ; 11(4): 1116-1136, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36601661

RESUMO

Radiotherapy (RT) is one of the most effective and commonly used cancer treatments for malignant tumors. However, the existing radiosensitizers have a lot of side effects and poor efficacy, which limits the curative effect and further application of radiotherapy. In recent years, emerging nanomaterials have shown unique advantages in enhancing radiosensitization. In particular, gold-based nanomaterials, with high X-ray attenuation capacity, good biocompatibility, and promising chemical, electronic and optical properties, have become a new type of radiotherapy sensitizer. In addition, gold-based nanomaterials can be used as a carrier to load a variety of drugs and immunosuppressants; in particular, its photothermal therapy, photodynamic therapy and multi-mode imaging functions aid in providing excellent therapeutic effect in coordination with RT. Recently, many novel strategies of radiosensitization mediated by multifunctional gold-based nanomaterials have been reported, which provides a new idea for improving the efficacy and reducing the side effects of RT. In this review, we systematically summarize the recent progress of various new gold-based nanomaterials that mediate radiosensitization and describe the mechanism. We further discuss the challenges and prospects in the field. It is hoped that this review will help researchers understand the latest progress of gold-based nanomaterials for radiosensitization, and encourage people to optimize the existing methods or explore novel approaches for radiotherapy.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Neoplasias , Radiossensibilizantes , Humanos , Ouro/química , Nanopartículas Metálicas/química , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Radiossensibilizantes/química
4.
Small ; 18(32): e2202761, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35723179

RESUMO

The optical superlattice structure derived from a periodic poling process endows ferroelectric crystals with tunable optical property regulation, which has become one of the most efficient strategies for fabricating high-efficiency optical devices. Achieving a precise superlattice structure has been the main barrier for preparation of specific optical applications due to the unclear dynamics of domain structure regulation. Herein, a real-time monitoring system for the in situ observation of periodic poling of lithium niobate is established to investigate ferroelectric domain reversal dynamics. The formation of reversed domain nuclei, growth, and expansion of the domain are monitored, which is highly related to domain growth dynamics. The nucleation and growth of domain are discussed combined with the monition of domain reversal and the variation of local electric field distribution along with finite element analysis. An electrode configuration with multiholes is proposed to use the local electric field more efficiently and controllably, which could achieve a higher domain nucleus density with high uniformity. Two-mm-thick periodically poled LiNbO3 crystals with high quality are achieved. A nonlinear light conversion from 1064.2 to 3402.4 nm is realized by the single-resonance optical parameter oscillator with a nonlinear optical efficiency up to 26.2%.

5.
Nanomaterials (Basel) ; 11(2)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669842

RESUMO

Gold nanobipyramids (Au-NBPs) were successfully fabricated using the seed-mediated growth method. The saturable absorption performance of the Au-NBPs at a 2-µm band wavelength was characterized. Using excellent-quality, mature Ho:YLF crystals, a doubly Q-switched (DQS) laser joining an acousto-optic modulator (AOM) with an Au-NBP saturable absorber (SA) was achieved. When the modulation rate of the AOM was 1 kHz, the shortest pulse width (54 ns) was attained, corresponding to the highest peak power (3.87 kW). This was compared with a singly Q-switched laser joining an AOM with an Au-NBP SA, whereby the maximum pulse width compression ratio was 15.2 and the highest peak power enhancement factor was 541.3. Our study has shown that Au-NBPs are a potential saturable absorption nanomaterial, and the DQS laser has the benefit of compressing the pulse width and increasing the peak power at a wavelength of 2.1 µm.

6.
Light Sci Appl ; 9(1): 197, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303741

RESUMO

Recently, integrated photonics has attracted considerable interest owing to its wide application in optical communication and quantum technologies. Among the numerous photonic materials, lithium niobate film on insulator (LNOI) has become a promising photonic platform owing to its electro-optic and nonlinear optical properties along with ultralow-loss and high-confinement nanophotonic lithium niobate waveguides fabricated by the complementary metal-oxide-semiconductor (CMOS)-compatible microstructure engineering of LNOI. Furthermore, ferroelectric domain engineering in combination with nanophotonic waveguides on LNOI is gradually accelerating the development of integrated nonlinear photonics, which will play an important role in quantum technologies because of its ability to be integrated with the generation, processing, and auxiliary detection of the quantum states of light. Herein, we review the recent progress in CMOS-compatible microstructure engineering and domain engineering of LNOI for integrated lithium niobate photonics involving photonic modulation and nonlinear photonics. We believe that the great progress in integrated photonics on LNOI will lead to a new generation of techniques. Thus, there remains an urgent need for efficient methods for the preparation of LNOI that are suitable for large-scale and low-cost manufacturing of integrated photonic devices and systems.

7.
Front Oncol ; 10: 705, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714856

RESUMO

Clear cell renal cell carcinoma (ccRCC) represents the most common type of renal cell carcinoma (RCC) in adults, in addition to the worst prognosis among the common epithelial kidney tumors. Inflammation and angiogenesis seem to potentiate tumor growth and metastasis of the malignancy. The current study explored the contributions of the lncRNA MCM3AP-AS1 in tumor-associated inflammation and angiogenesis in ccRCC with a specific focus on its transcriptional regulation and its interactions with transcription factor E2F1 and DPP4. Tumor tissues and matched adjacent non-tumor tissues were collected from 78 ccRCC patients. Methylation-specific PCR and ChIP assays were applied to detect the methylation at the promoter region of MCM3AP-AS1. Dual-luciferase reporter assay, RIP, RNA pull-down, and ChIP assays were employed to confirm the interactions between MCM3AP-AS1, E2F1, and DPP4. Nude mice were subcutaneously xenografted with human ccRCC cells. Cell proliferation was evaluated by CCK-8 assays and EDU staining in ccRCC cells in vitro and by immunohistochemical staining of Ki67 in vivo. Inflammation was examined by detecting the secretion of pro-inflammatory cytokines (TNF-α, IL-1ß, and IL-6). Pro-angiogenic ability of ccRCC cells was assessed by the co-culture with human umbilical vein endothelial cells (HUVEC) in vitro and by microvessel density (MVD) measurements and angiogenesis in the chicken chorioallantoic membrane. MCM3AP-AS1 was highly-expressed in ccRCC and associated with poor patient survival. Demethylation of MCM3AP-AS1 was noted in ccRCC tissues and cells. Over-expression of MCM3AP-AS1 enhanced cell proliferation, the release of pro-inflammatory cytokines, and the tube formation of HUVECs in cultured human Caki-1 and 786-O cells. MCM3AP-AS1 was shown to enhance the E2F1 enrichment at the DPP4 promoter, to further increase the expression of DPP4. Knockdown of DPP4 could abate pro-angiogenic and pro-inflammatory abilities of MCM3AP-AS1 in ccRCC cells. Pro-angiogenic and pro-inflammatory abilities of MCM3AP-AS1 in vivo were confirmed in mice subcutaneously xenografted with human ccRCC cells. Our findings demonstrate a novel mechanism by which lncRNA MCM3AP-AS1 exerts pro-angiogenic and pro-inflammatory effects, highlighting the potential of MCM3AP-AS1 as a promising target for treating ccRCC.

8.
Ecotoxicol Environ Saf ; 115: 217-22, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25706086

RESUMO

We conducted a battery of toxicity tests using photo bacterium, algae, crustacean and fish to evaluate acute toxicity profile of coking wastewater, and to evaluate the performance of a novel wastewater treatment process, vertical tubular biological reactor (VTBR), in the removal of toxicity and certain chemical pollutants. A laboratory scale VTBR system was set up to treat industrial coking wastewater, and investigated both chemicals removal efficiency and acute bio-toxicity to aquatic organisms. The results showed that chemical oxygen demand (COD) and phenol reductions by VTBR were approximately 93% and 100%, respectively. VTBR also reduced the acute toxicity of coking wastewater significantly: Toxicity Unit (TU) decreased from 21.2 to 0.4 for Photobacterium phosphoreum, from 9.5 to 0.6 for Isochrysis galbana, from 31.9 to 1.3 for Daphnia magna, and from 30.0 to nearly 0 for Danio rerio. VTBR is an efficient treatment method for the removal of chemical pollutants and acute bio-toxicity from coking wastewater.


Assuntos
Coque/toxicidade , Resíduos Industriais , Gerenciamento de Resíduos/métodos , Águas Residuárias/toxicidade , Animais , Análise da Demanda Biológica de Oxigênio , Crustáceos/efeitos dos fármacos , Daphnia/efeitos dos fármacos , Haptófitas/efeitos dos fármacos , Fenol/análise , Photobacterium/efeitos dos fármacos , Testes de Toxicidade , Peixe-Zebra
9.
Adv Healthc Mater ; 4(7): 998-1003, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25663267

RESUMO

Polarized ferroelectric crystal lithium niobate wafers with different cuts are selected to offer differently charged surfaces. By induction of the mesenchymal stem cells differentiation into osteoblasts on different charged surfaces, the specific osteogenic-associated markers are assessed and the results illustrate that the positively charged wafer surface enhances rBMMSCs osteogenic differentiation.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Mesenquimais/fisiologia , Osteoblastos/fisiologia , Osteogênese/fisiologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Nióbio/farmacologia , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Óxidos/farmacologia
10.
Chem Asian J ; 9(6): 1648-54, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24756967

RESUMO

Heterostructures play an important role not only in the manufacture of semiconductor devices, but also in the field of catalysis. Herein, we report the synthesis of PdO/TiO2 and Pd/TiO2 heterostructured nanobelts by means of a simple co-precipitation method, followed by a reduction process using surface-modified TiO2 nanobelts as templates. The as-obtained heterostructures were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, and UV/Vis diffuse reflectance spectroscopy. PdO and Pd nanoparticles with a size of about 1.3 and 1.6 nm were assembled uniformly on the surface of TiO2 nanobelts, respectively. Compared with TiO2 nanobelts, PdO/TiO2 and Pd/TiO2 hybrid nanobelts exhibit enhanced photocatalytic activity upon UV and visible-light irradiation. Photoelectrochemical technology was used to study the heterostructure effect on enhanced photocatalytic activity. Our mechanistic investigation revealed that energy-band matching is the major factor in the observed enhancement of photocatalytic activity.

11.
Int J Nanomedicine ; 8: 2903-16, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23966780

RESUMO

A silver nanoparticle (AgNP)-filled hydrogen titanate nanotube layer was synthesized in situ on a metallic titanium substrate. In the synthesis approach, a layer of sodium titanate nanotubes is first prepared on the titanium surface by using a hydrothermal method. Silver nitrate solution is absorbed into the nanotube channels by immersing a dried nanotube layer in silver nitrate solution. Finally, silver ions are reduced by glucose, leading to the in situ growth of AgNPs in the hydrogen titanate nanotube channels. Long-term silver release and bactericidal experiments demonstrated that the effective silver release and effective antibacterial period of the titanium foil with a AgNP-filled hydrogen titanate nanotube layer on the surface can extend to more than 15 days. This steady and prolonged release characteristic is helpful to promote a long-lasting antibacterial capability for the prevention of severe infection after surgery. A series of antimicrobial and biocompatible tests have shown that the sandwich nanostructure with a low level of silver loading exhibits a bacteriostatic rate as high as 99.99%, while retaining low toxicity for cells and possessing high osteogenic potential. Titanium foil with a AgNP-filled hydrogen titanate nanotube layer on the surface that is fabricated with low-cost surface modification methods is a promising implantable material that will find applications in artificial bones, joints, and dental implants.


Assuntos
Antibacterianos , Nanopartículas Metálicas/química , Nanotubos/química , Óxidos/química , Prata/química , Titânio/química , Fosfatase Alcalina/metabolismo , Análise de Variância , Animais , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Hidrogênio/química , Teste de Materiais , Microscopia de Fluorescência , Próteses e Implantes , Prata/farmacologia , Análise Espectral Raman
12.
Small ; 9(22): 3864-72, 2013 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-23681828

RESUMO

CeO2 /TiO2 nanobelt heterostructures are synthesized via a cost-effective hydrothermal method. The as-prepared nanocomposites consist of CeO2 nanoparticles assembled on the rough surface of TiO2 nanobelts. In comparison with P25 TiO2 colloids, surface-coarsened TiO2 nanobelts, and CeO2 nanoparticles, the CeO2 /TiO2 nanobelt heterostructures exhibit a markedly enhanced photocatalytic activity in the degradation of organic pollutants such as methyl orange (MO) under either UV or visible light irradiation. The enhanced photocatalytic performance is attributed to a novel capture-photodegradation-release mechanism. During the photocatalytic process, MO molecules are captured by CeO2 nanoparticles, degraded by photogenerated free radicals, and then released to the solution. With its high degradation efficiency, broad active light wavelength, and good stability, the CeO2 /TiO2 nanobelt heterostructures represent a new effective photocatalyst that is low-cost, recyclable, and will have wide application in photodegradation of various organic pollutants. The new capture-photodegradation-release mechanism for improved photocatalysis properties is of importance in the rational design and synthesis of new photocatalysts.

13.
J Colloid Interface Sci ; 388(1): 144-50, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23010318

RESUMO

TiO(2) nanobelts were prepared by the hydrothermal growth method. The surface of the nanobelts was coarsened by selective acid corrosion and functionalized with Pd catalyst particles. Three nanobelt samples (TiO(2) nanobelts, surface-coarsened TiO(2) nanobelts and Pd nanoparticle/TiO(2) nanobelt surface heterostructures) were configured as gas sensors and their sensing ability was measured. Both the surface-coarsened nanobelts and the Pd nanoparticle-decorated TiO(2) nanobelts exhibited dramatically improved sensitivity to ethanol vapor. Pd nanoparticle-decorated TiO(2) nanobelts with surface heterostructures exhibited the best sensitivity, selectivity, working temperature, response/recovery time, and reproducibility. The excellent ethanol sensing performance is attributed to the large surface area and enhancement by Schottky barrier-type junctions between the Pd nanoparticles and TiO(2) nanobelts.


Assuntos
Etanol/química , Gases/análise , Nanoestruturas/química , Nanotecnologia , Paládio/química , Titânio/química , Catálise , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...